Explaining machine learning models to the business

How to create summaries of machine learning system decisions that business decision makers can understand

Explaining machine learning models to the business
Thinkstock

Explainable machine learning is a sub-discipline of artificial intelligence (AI) and machine learning that attempts to summarize how machine learning systems make decisions. Summarizing how machine learning systems make decisions can be helpful for a lot of reasons, like finding data-driven insights, uncovering problems in machine learning systems, facilitating regulatory compliance, and enabling users to appeal — or operators to override — inevitable wrong decisions.

Of course all that sounds great, but explainable machine learning is not yet a perfect science. The reality is there are two major issues with explainable machine learning to keep in mind:

  1. Some “black-box” machine learning systems are probably just too complex to be accurately summarized.
  2. Even for machine learning systems that are designed to be interpretable, sometimes the way summary information is presented is still too complicated for business people. (Figure 1 provides an example of machine learning explanations for data scientists.)
h2o explainable ml 01 H2O.ai

Figure 1: Explanations created by H2O Driverless AI. These explanations are probably better suited for data scientists than for business users.

For issue 1, I’m going to assume that you want to use one of the many kinds of “glass-box” accurate and interpretable machine learning models available today, like monotonic gradient boosting machines in the open source frameworks h2o-3, LightGBM, and XGBoost.1 This article focuses on issue 2 and helping you communicate explainable machine learning results clearly to business decision-makers.

To continue reading this article register now